當(dāng)前位置: 首頁(yè) > 新聞資訊 > 行業(yè)資訊

攝影測(cè)量與深度學(xué)習(xí)之間會(huì)產(chǎn)生怎樣的”火花“

發(fā)布日期:2019-07-04 00:00 瀏覽量:10973

攝影測(cè)量學(xué)的誕生與深度學(xué)習(xí)的起源

攝影測(cè)量學(xué)是一門“利用光學(xué)像片研究被攝物體的形狀、位置、大小、特性及相互位置關(guān)系”的學(xué)科。攝影測(cè)量誕生于19世紀(jì)早期。1838年,物理學(xué)家惠斯頓發(fā)明了實(shí)體鏡,第一次發(fā)現(xiàn)和定義了立體視覺。1839年,法國(guó)畫家達(dá)蓋爾發(fā)明了銀版攝影法,并制作了世界上第一臺(tái)真正的照相機(jī)。在此基礎(chǔ)上,法國(guó)測(cè)量學(xué)家Fourcade首先發(fā)現(xiàn)了用立體照片可重建立體視覺,從而促成了攝影測(cè)量學(xué)的誕生。攝影測(cè)量的第一個(gè)也是最重要的分支是航空攝影測(cè)量。

 

深度學(xué)習(xí)起源于20世紀(jì)中葉的人工智能。人工智能的兩個(gè)主要流派分別是符號(hào)主義(symbolism)和聯(lián)結(jié)主義(connectionism)。其中,符號(hào)主義者在1956年首次提出“人工智能”的概念,并統(tǒng)治了該領(lǐng)域近半個(gè)世紀(jì);基于統(tǒng)計(jì)學(xué)習(xí)的思想被廣泛應(yīng)用于機(jī)器學(xué)習(xí)、計(jì)算機(jī)視覺,以及攝影測(cè)量與遙感。

 

攝影測(cè)量與深度學(xué)習(xí)及計(jì)算機(jī)視覺的聯(lián)系

深度學(xué)習(xí)的最重要應(yīng)用是在視覺圖像上,如手寫字體識(shí)別、自然圖像分類和檢索等。而攝影測(cè)量的研究對(duì)象就是視覺圖像,因此深度學(xué)習(xí)的成功和蓬勃發(fā)展,使得攝影測(cè)量也成為最受益的學(xué)科之一。

 

在語(yǔ)義上,攝影測(cè)量中的研究?jī)?nèi)容就是采用智能方法為各行業(yè)提供專題圖。攝影測(cè)量的應(yīng)用特性使得它并不關(guān)心諸如特征描述、上下文關(guān)系等中間結(jié)果。這種端到端的模式(end-to-end )特別適用深度學(xué)習(xí)方法。目前,深度學(xué)習(xí)已經(jīng)被廣泛用于遙感圖像的分類、識(shí)別、檢索和提取。與在幾何方面的欠佳表現(xiàn)不同,在語(yǔ)義上基本全面碾壓了傳統(tǒng)的方法。

 

1982年,Marr發(fā)表《視覺:從計(jì)算的視角研究人的視覺信息表達(dá)與處理》,是計(jì)算機(jī)視覺的開山之作。計(jì)算機(jī)視覺的最初研究:用計(jì)算機(jī)代替人眼,從圖片中重建3D世界。與攝影測(cè)量在幾何方面具有很高的重疊度。20世紀(jì)90年代,在語(yǔ)義方面計(jì)算機(jī)視覺開始蓬勃開展。其中運(yùn)用了大量的機(jī)器學(xué)習(xí)知識(shí)。有學(xué)者分析指出機(jī)器學(xué)習(xí)與計(jì)算機(jī)視覺重疊度約在60%~70%,因此是非常緊密的兩門學(xué)科。

 

隨著深度學(xué)習(xí)成為機(jī)器學(xué)習(xí)的主流,深度學(xué)習(xí)在計(jì)算機(jī)視覺中得到廣泛應(yīng)用。將深度學(xué)習(xí)引入到攝影測(cè)量中,特別是提高攝影測(cè)量后期語(yǔ)義處理的智能水平,是科學(xué)研究發(fā)展的必然途徑。

 

深度學(xué)習(xí)在攝影測(cè)量語(yǔ)義方面的應(yīng)用

深度學(xué)習(xí)在遙感圖像語(yǔ)義提取方面的應(yīng)用剛剛起步并逐漸普及。以下將從各類地物語(yǔ)義專題圖出發(fā),回顧深度學(xué)習(xí)的具體應(yīng)用。

遙感圖像建筑、道路網(wǎng)等地物的提取一直是數(shù)十年來(lái)的熱門課題。雖然經(jīng)典方法取得一定的效果,但距離實(shí)用、市場(chǎng)、商業(yè)軟件尚有一定的距離。CNN目前正成為道路網(wǎng)提取的主流方法。通過級(jí)聯(lián)式端到端CNN同時(shí)實(shí)現(xiàn)了道路網(wǎng)提取及道路中心線提取,與其他方法比較,達(dá)到了更高的分類精度。通過CNN結(jié)合線積分卷積克服了樹木遮蔽、房屋陰影所造成的道路網(wǎng)殘缺問題。通過非監(jiān)督學(xué)習(xí)預(yù)處理和空間相關(guān)性的應(yīng)用,利用深度學(xué)習(xí)極大地提高了復(fù)雜城市場(chǎng)景的道路提取精度。均為使用深度學(xué)習(xí)的方法進(jìn)行道路提取并取得了良好的效果。

 

建筑物、農(nóng)作物、水體等專題的提取相對(duì)道路而言較少,但預(yù)期會(huì)有許多相關(guān)文獻(xiàn)近期發(fā)表。采用CNN實(shí)現(xiàn)高分辨率多光譜衛(wèi)星影像的建筑物提取。

首先采用AlexNet提取特征,最后的全連接層用于訓(xùn)練SVM分類器并采用MRF模型精化。作物精細(xì)分類是攝影測(cè)量與遙感在農(nóng)業(yè)中的重要應(yīng)用。在影像平面上進(jìn)行2D卷積,在光譜方向上進(jìn)行1D卷積,分別提取出影像空間特征和光譜特征,取得了比隨機(jī)森林和全連接MLP更好的作物分類精度。

為了從本質(zhì)上解決該問題,需要考慮兩點(diǎn)。

 

第一點(diǎn)是恰當(dāng)?shù)倪w移學(xué)習(xí)方法。目前ImageNet等龐大的數(shù)據(jù)庫(kù)來(lái)自大眾攝影圖像,并不包括鳥瞰航攝圖像和衛(wèi)星遙感圖像。照片的標(biāo)注諸如人、大象或椅子;遙感圖像中的標(biāo)注諸如耕地、建筑、森林等。若直接將這些數(shù)據(jù)庫(kù)訓(xùn)練得到的模型,用來(lái)進(jìn)行遙感圖像直接分類,就要考慮遷移學(xué)習(xí)。遷移學(xué)習(xí)是將A數(shù)據(jù)集中訓(xùn)練好的模型,應(yīng)用在B數(shù)據(jù)集上。A與B可能是同源的,也可能存在巨大差異。這就要進(jìn)一步發(fā)掘完善的遷移學(xué)習(xí)機(jī)制。

 

第二點(diǎn)是建立針對(duì)遙感圖像的開源的、完備的標(biāo)簽數(shù)據(jù)庫(kù)。涵蓋足夠多的地物類別,每個(gè)類別包括足夠多的樣本。這樣的數(shù)據(jù)庫(kù)是攝影測(cè)量與遙感走向“自動(dòng)化專題制圖”的必經(jīng)之路。然而,實(shí)現(xiàn)難度要比千萬(wàn)圖像級(jí)別的ImageNet更大。首先,由于遠(yuǎn)距成像的特性,圖像受到更多電磁輻射傳輸?shù)挠绊憽=?jīng)過大氣傳播的電磁輻射與地物間的相互作用機(jī)理更加復(fù)雜,同一標(biāo)簽的樣本往往呈現(xiàn)明顯的差異。這種差異不但對(duì)樣本的選取造成不便,而且對(duì)深度學(xué)習(xí)模型的可區(qū)分性提出更大的挑戰(zhàn)。

 

第二,眾包模式并不能完全起作用。普通人可能很好地辨認(rèn)出的區(qū)別,因此通過互聯(lián)網(wǎng)眾包能夠快速構(gòu)建一個(gè)巨大的標(biāo)注數(shù)據(jù)庫(kù);但是,小麥和水稻在遙感圖像上的差異,則需要專業(yè)人員的目視判讀。若影像分辨率較低,甚至可能需要實(shí)地調(diào)查。

 

第三,攝影測(cè)量與遙感界的科研模式尚需向開源發(fā)展。目前,遙感學(xué)界已經(jīng)開始走向開源模式,希望由公司、政府或科研機(jī)構(gòu)能夠在短期內(nèi)建立的針對(duì)遙感圖像分類的標(biāo)簽數(shù)據(jù)庫(kù),并實(shí)現(xiàn)完全開源。有了足夠的數(shù)據(jù)標(biāo)簽庫(kù)或恰當(dāng)?shù)倪w移學(xué)習(xí)方法,并借助深度學(xué)習(xí)的泛化能力,可以預(yù)期未來(lái)攝影測(cè)量與遙感專題制圖的精度將比傳統(tǒng)的特征分類方法得到明顯的改進(jìn)。

 

文章來(lái)源于網(wǎng)絡(luò),由飛燕遙感theweddingcatcher.com編輯。登載此文出于傳遞更多信息之目的,版權(quán)歸原作者及刊載媒體所有,如本文中圖片或文字侵犯您的權(quán)益,請(qǐng)聯(lián)系我們。

 

猜你喜歡:

測(cè)繪4D產(chǎn)品中 DLG 數(shù)據(jù)是如何生產(chǎn)的?

激光LIDAR 航測(cè)技術(shù)應(yīng)用在河道測(cè)繪


飛燕微信公眾號(hào).jpg


猜你喜歡

相關(guān)設(shè)備
推薦服務(wù)
相關(guān)案例
新聞資訊

服務(wù)中心
案例中心
行業(yè)應(yīng)用 技術(shù)應(yīng)用
新聞資訊
行業(yè)資訊 公司新聞 常見問題解答
關(guān)于我們
招賢納士 關(guān)于飛燕 公司設(shè)備 資質(zhì)榮譽(yù) 公司相冊(cè) 客戶評(píng)價(jià) 發(fā)展歷程

聯(lián)系方式

電話:025-83216189

郵箱:frank.zhao@feiyantech.com

地址:江蘇省南京市玄武區(qū)紅山街道領(lǐng)智路56
號(hào)星河World產(chǎn)業(yè)園3號(hào)樓北8樓

微信公眾號(hào)

總經(jīng)理微信

025-83216189